2021,    № 5 (47)    

ELECTROTECHNOLOGY AND ELECTRIC EQUIPMENT IN AGRICULTURE




Ostashenkov A.P., Medyakov A.A., Lastochkin D.M., Anisimov P.N.

Mathematical modeling of the reliability of a hybrid micro-power plant

In the conditions of regions with relatively low solar and wind potentials, interruptions in power supply to consumers powered by micro-power plants based on renewable energy sources may be due to a decrease in the power of wind power plants, photovoltaic modules with insufficient wind speed and insolation, respectively, to provide power to consumers. A study of the reliability of a system including a wind power plant, photovoltaic modules, a hybrid charge controller, an energy storage device and an inverter was carried out using a logical-probabilistic method. As part of the study, an analysis was made of the structure of the power supply system and its modes of operation in the event of various events: failure of system elements, replacement of failed elements, diagnostics of elements, decrease in the power of the wind power plant and photovoltaic modules. Combinations of events leading to a power failure of consumers connected to a hybrid micro-power plant have been determined. A fault tree was built for the hybrid micro-power plant. Expressions are obtained for calculating the probability of short-term, long-term power supply interruptions, the probability of power supply interruptions occurring when off-design insolation and wind speed occur. Mathematical modeling of the reliability of the hybrid micro-power plant for the conditions of the central part of the Republic of Mari El has been carried out. It has been determined that the probability of a system failure is determined mainly by the probability of long power outages. In this case, the reliability indicators of the system as a whole are largely determined by the values of the reliability indicators of the hybrid controller and inverter.

Keywords:YBRID MICRO-POWER PLANT, RENEWABLE ENERGY SOURCES, RELIABILITY, RURAL POWER SUPPLY