Электронный научно-производственный журнал «АгроЭкоИнфо»

УДК: 633.1:631.531.04 (571.61)

Влияние погодных условий и сроков посева на продолжительность межфазных периодов ярового тритикале в условиях Амурской области

Муратов А.А., Тихончук П.В., Туаева Е.В., Оборская Ю.В., Тимошенко Э.В. Дальневосточный государственный аграрный университет

Аннотация

Выбор оптимального срока посева остаётся одним из наиболее важных элементов современной технологии возделывания, так как он определяется особенностью физиологии развития растений и погодными условиями их выращивания. Проблема условий прохождение межфазных изучения влияния погодных на периодов сельскохозяйственных культур, в том числе и тритикале, является важной задачей для внедрения её в производство. В связи с чем нами была поставлена цель изучить влияние сроков посева и погодных условий на продолжительность межфазных периодов различных сортов ярового тритикале в условиях Амурской области. В результате было установлено, что в первую половину вегетации, начиная от всходов до выхода в трубку, при смещении срока посева с 15 апреля к 5 маю происходит удлинение межфазных периодов, при этом обратная тенденция наблюдается при прохождении последующих периодов. Статистический анализ влияния гидротермических условий в годы проведения исследований на прохождение межфазных периодов показал, что формирование будущего урожая в первую половину вегетации (от посева до кущения) главным образом было связано с температурным режимом, а во второй половине вегетации (от колошения до полной спелости) с количеством выпавших осадков.

Ключевые слова: ЯРОВОЕ ТРИТИКАЛЕ, СРОК ПОСЕВА, МЕЖФАЗНЫЕ ПЕРИОДЫ, КОРРЕЛЯЦИОННАЯ ЗАВИСИМОСТЬ

Введение

Процессы роста и развития растений отдельных видов определены генетически. В то же время на их интенсивность и, соответственно, на время созревания воздействуют

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

внешние условия. Они могут влиять на реализацию генетической информации, тем самым ускоряя или замедляя наступление определенных этапов развития [1].

Основными факторами, воздействующими на растение, которые подвержены значительным изменениям, являются: температура воздуха и количество выпавших осадков за период вегетации. Поэтому, изменяя сроки сева, мы, тем самым, помещаем растения в различные экологические ниши конкретной географической зоны возделывания, давая возможность проявить норму реакции растений на внешние факторы среды [2].

Соотношение вегетативной и генеративный стадии развития определяется адаптацией к условиям внешней среды, а сокращение любого межфазного периода вызывает ускорение ростовых процессов, что в итоге ведет к снижению продуктивности [3].

Приоритетным направлением в агропромышленном комплексе Амурской области на сегодняшний день является развитие животноводства, поэтому встает вопрос о подборе новых высокопродуктивных кормовых культур. Частичному решению данного вопроса способствует расширение посевных площадей под относительно новой зерновой культурой – тритикале [4].

Тритикале возделывают во многих странах мира - таких как Польша, Белоруссия и др. В России под данной культурой в 2021 году было занято около 124 тыс. га. Лидерами по площади посева являются Приволжский и Южный федеральные округа, 22 и 24 тыс. га соответственно. У тритикале более высокий потенциал биологической продуктивности среди злаковых культур и более высокая устойчивость к неблагоприятным почвенно-климатическим условиям [5, 6].

Тритикале имеет огромный потенциал как для производства зерна, так и для зелёной массы, хотя объём исследований по улучшению урожая для лучшей адаптации и качества зерна в нашей стране отстаёт от исследований других зерновых культур. В Амурской области яровое тритикале возделывается сравнительно недавно, показав хорошие результаты как фуражная культура [7, 8].

В связи с чем нами была поставлена цель - изучить влияние сроков посева и погодных условий на продолжительность межфазных периодов различных сортов ярового тритикале в условиях Амурской области.

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

Методика исследований

Экспериментальная часть работы проведена в 2014-2016 гг. на кафедре общего земледелия и растениеводства Дальневосточного ГАУ. Полевые исследования проводили на опытном поле Дальневосточного ГАУ, которое расположено в южной зоне Амурской области. Исследования проводились с тремя сортами ярового тритикале – Ярило, Укро, Кармен.

Агрометеорологические условия 2014 - 2016 годов носили контрастный характер. В 2015 году наблюдался недостаток тепла весной, а также большое количество осадков в июле месяце, что сказалось на урожайности тритикале. Наиболее благоприятные условия для возделывания культуры отмечены в 2014 и в 2016 году.

Почва опытного участка луговая черноземовидная среднемощная [9]. Содержание гумуса 3,7 – 3,9%. По агрохимическим свойствам характеризуется по степени кислотности рНсол 5,5 – среднекислая, гидролитическая кислотность низкая [10]. Был заложен 2-х факторный опыт в 4-х кратной повторности. Предшественник соя. Посев проводили в четыре срока: 15 апреля, 22 апреля, 29 апреля и 5 мая. В опытах семена высевались сеялкой СН-16 в агрегате с трактором Dongfeng с междурядьями 15 см, норма высева 5 млн.шт./га. Способ посева – рядовой, общая площадь делянки 30 м², учетная – 24 м² [11].

В период вегетации отмечали наступление и продолжительность фаз развития растений. Время наступление фазы отмечали для каждого срока отдельно. Статистическая обработка результатов исследований проведена с использованием программы StatTech v. 2.1.0 (разработчик - OOO «Статтех», Россия).

Результаты исследований

Для раскрытия наиболее важных жизненных процессов при посеве любой сельскохозяйственной культуры, в том числе и ярового тритикале в разные сроки, необходимо располагать данными о темпах роста и развития растений в течение всего периода вегетации. В наших исследованиях продолжительность периода посев — всходы изменялась по годам исследований от 8 до 18 дней, при этом, как и следовало ожидать, наиболее продолжительный данный период (15-18 дней) отмечен при посеве во второй декаде апреля. Посев в четвертый срок (5 мая) способствовал наиболее быстрому появлению всходов (10-12 дней), сокращению данного периода, по-видимому,

Электронный научно-производственный журнал «АгроЭкоИнфо»

способствовало повышение температуры воздуха при достаточной влажности почвы. При оценке периода посев – всходы в зависимости от срока посева, были установлены статистически значимые различия (p<0,001). Наиболее поздние всходы среди изучаемых сортов появлялись у сорта Кармен (рис. 1).

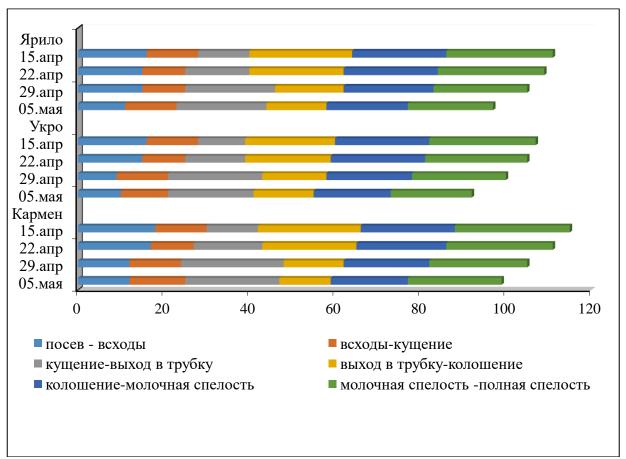


Рис. 1. Продолжительность межфазных периодов ярового тритикале при разных сроках посева, 2014—2016 гг.

Период всходы-кущение является одним из наиболее важных в формировании будущего урожая. В этот период начинается дифференциация колоса и зачаточных стеблевых узлов. Дружное и более раннее кущение является необходимым условием формирования оптимального стеблестоя [4]. Продолжительность данного межфазного периода за годы наших исследований изменялась от 7 до 18 дней и в среднем за три года наблюдений составила 10-12 дней, при этом срок посева не повлиял на продолжительность данного периода, что также отмечено при проведении статистического анализа (p= 0,495).

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

В разрезе сортов так же не отмечено сортовых особенностей по изменению межфазного периода всходы-кущение.

При прохождении фазы кущение – выход в трубку наблюдалась закономерность к увеличению продолжительности данного периода в зависимости от срока посева соответственно от 11 дней при первом сроке до 24 дней при последнем сроке посева. В среднем по всем срокам сева наиболее продолжительный данный период – 22 дня был при посеве 29 апреля. При корреляционном анализе данного периода в зависимости от срока посева, нами были установлены статистически значимые различия (р = 0,005), что говорит о сильной зависимости удлинения периода кущение - выход в трубку при затягивании со сроком сева. В разрезе сортов не отмечено сортовых особенностей по изменению межфазного периода кущение – выход в трубку.

Обратная тенденция наблюдалась при прохождении последующих периодов. Наиболее сильно сокращение практически в два раза отмечено в следующий период выход в трубку-колошение, где при запаздывании со сроком посева он изменился с 24 до 12 дней. Особенно это заметно при 2-м и 3-м сроках посева, где срок прохождения данного периода уменьшился на 6 дней. Статистический анализ также выявил высокую зависимость при смещении срока посева на продолжительность прохождения данного межфазного периода (р<0,001). В разрезе сортов не отмечено сотовых особенностей по изменению данного межфазного периода.

В период от колошения до молочной спелости происходит перераспределение пластических веществ от всего растения к зерну, тем самым формируется будущий урожай, поэтому продолжительность данного периода напрямую влияет на уровень продуктивности ярового тритикале. В наших опытах при оценке связи урожайности с продолжительностью прохождения данного межфазного периода была установлена прямая связь, которая описывается уравнением парной линейной регрессии:

$$Y$$
 урожайность, ц/га = $0.236 \times X$ колошение - молочная спелость, дней + 16.259

Поэтому при увеличении прохождения межфазного периода колошение - молочная спелость на 1 день, следует ожидать увеличения урожайности на 0,247 ц/га. В наших опытах продолжительность данного периода снижалась на два дня при смещении срока посева на каждые 7 дней, начиная со второго срока посева (22 апреля) к последнему (5 мая). Статистический анализ показал высокую зависимость при смещении срока посева на

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

продолжительность прохождения данного межфазного периода (p < 0,001). В разрезе сортов не отмечено сортовых особенностей по изменению межфазного периода колошение - молочная спелость.

В период от молочной до полной спелости зерна завершается его формирование и накопление запасных питательных веществ. Продолжительность данного периода в большей степени зависит от погодных условий, и в меньшей от элементов агротехники. В наших опытах данный период составил от 20 дней при посеве 5 мая и до 26 дней при посеве 15 апреля, в среднем данный период сократился на два дня, при смещении со сроком посева от раннего к позднему. Статистический анализ показал высокую зависимость при смещении срока посева на продолжительность прохождения данного межфазного периода (p < 0.001). В разрезе сортов наиболее продолжительный, на 1-2 дня в зависимости от срока посева, межфазный период от молочной до полной спелости был отмечен у сорта Кармен.

В целом, наиболее продолжительный вегетационный период наблюдался при первом сроке посева - 15 апреля (92-97 дней), наименьший при посеве 5 мая (82-86 дней). В разрезе сортов наиболее продолжительный период вегетации отмечен у сорта ярового тритикале Кармен (86-97 дней), наименьший у сорта Ярило (82-92 дня).

Таким образом, даты наступления фенологических фаз у изучаемых сортов ярового тритикале и их продолжительность носили довольно своеобразный характер и отличались как по вариантам опыта, так и по годам исследований, в связи с чем нами был выполнен статистический анализ влияния гидротермических условий в годы проведения исследований на прохождение межфазных периодов.

В результате было установлено, что на продолжительность межфазного периода посев-всходы в большей степени повлияло количество выпавших осадков в данный период $(r_{xy}=-0.494)$, чем сумма активных температур $(r_{xy}=0.034)$. Поэтому, при увеличении количества выпавших осадков на 1 мм, следует ожидать уменьшение периода посев-всходы на 0.111 дней. Полученная модель объясняет 24.4% наблюдаемой дисперсии.

Наиболее подверженным погодным условиям оказался следующий период всходыкущение. При оценке влиянии суммы активных температур установлена сильная корреляционная зависимость (r_{xy} =0,728). При этом при увеличении суммы активных температур на 1° С следует ожидать увеличения продолжительности периода на 0,126 дней. А количество выпавших осадков оказывает умеренное влияние на продолжительность

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

периода всходы-кущение (r_{xy} =0,395), поэтому при увеличении количества выпавших осадков на 1 мм следует ожидать увеличения продолжительности периода на 0,084 дней.

При оценке следующего периода кущение — выход в трубку было установлено, что сумма активных температур оказывает весьма высокий уровень корреляционной зависимости (r_{xy} =0,933) на его продолжительность. В результате, при построении уравнения парной линейной регрессии, можно сказать, что при увеличении суммы активных температур на 1° С следует ожидать увеличения продолжительности периода на 0,089 дней. Количество выпавших осадков в данный период оказывает слабое влияние (r_{xy} =-0,168), поэтому при увеличении количества выпавших осадков на 1 мм следует ожидать уменьшения продолжительности периода на 0,109 дней.

На прохождение периода выход в трубку-колошение сумма активных температур оказывает слабую корреляционную зависимость (r_{xy} =0,253) на его продолжительность, поэтому при увеличении суммы активных температур на 1°C следует ожидать увеличения продолжительности периода на 0,031 дней. Количество выпавших осадков в данный период оказывает умеренное влияние (r_{xy} =0,442), поэтому при увеличении количества выпавших осадков на 1 мм следует ожидать увеличения продолжительности периода на 0,092 дней.

Во второй половине вегетации в период колошение-молочная спелость в большей степени возрастает влияние температурного фактора. В результате была установлена заметная корреляционная зависимость (r_{xy} =0,689) между суммой активных температур и его продолжительностью. В связи с чем, при увеличении суммы активных температур на 1° С, следует ожидать увеличение продолжительности периода на 0,052 дней. Количество выпавших осадков в данный период оказывает слабое влияние (r_{xy} =0,125), поэтому при увеличении количества выпавших осадков на 1 мм следует ожидать увеличения продолжительности периода всего на 0,014 дней.

В завершающий вегетацию растений ярового тритикале период молочная спелось - полная спелость остается заметным влияние температурного фактора (r_{xy} =0,57). Поэтому, при построении уравнения парной линейной регрессии, можно сказать, что при увеличении суммы активных температур на 1°C следует ожидать увеличения продолжительности периода на 0,052 дней, что объясняется 32,5% наблюдаемой дисперсии. Количество выпавших осадков в данный период также, как и в предыдущий период оказывает слабое

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

влияние (r_{xy} =0,166). Поэтому, при увеличении количества выпавших осадков на 1 мм, следует ожидать увеличения продолжительности периода на 0,024 дней.

Однако главным критерием оценки как агротехнических элементов возделывания, так и внешних факторов среды, является получение наибольшего урожая, поэтому оценка влияния погодных условий на формирование продуктивности ярового тритикале с учетом погодных условий Амурской области весьма актуальна (табл. 1).

Таблица 1. Математическая зависимость влияния гидротермических условий в межфазный

период (Х) на формирование будущего урожая (У)

период (21) на формирование оудущего				ypomun (1)		
Межфазный период	Сумма активных температур, °С			Количество выпавших осадков, мм		
	Уравнение парной линейной регрессии	r_{xy}	p	Уравнение парной линейной регрессии	r_{xy}	р
посев-всходы	$Y = -0.025 \times X + 21.393$	-0,086	0,619	$Y = -0.174 \times X + 23.382$	-0,448	0,006*
всходы- кущение	Y =0,03×X+20,276	0,102	0,552	Y =0,064×X+19,063	0,179	0,297
кущение – выход в трубку	Y =-0,014×X+22,59	-0,205	0,230	Y =0,313×X+11,521	0,677	0,001*
выход в трубку- колошение	Y =0,043×X+13,874	0,304	0,071	Y =0,063×X+19,204	0,265	0,119
колошение - молочная спелость	Y =0,044×X+10,466	0,250	0,142	Y =0,134×X+13,998	0,526	0,001*
молочная спелось- полная спелость	Y =-0,05×X+34,421	-0,255	0,133	Y =-0,166×X+29,29	-0,546	0,001*

Примечание: * – различия показателей статистически значимы (р < 0,05)

Как видно из таблицы 1, вариабельность формирования будущего урожая главным образом, была связана в первую половину вегетации (от посева до кущения) с температурным режимом, а во второй половине вегетации (от колошения до полной спелости) с количеством выпавших осадков.

Муратов А.А., Тихончук П.В., Туаева Е.В., Оборская Ю.В., Тимошенко Э.В. Влияние погодных условий и сроков посева на продолжительность межфазных периодов ярового тритикале в условиях Амурской области Электронный научно-производственный журнал

«АгроЭкоИнфо»

Выводы

Проводя оценку изменения продолжительности межфазных периодов в зависимости от сроков посева при выращивании перспективной зерновой культуры ярового тритикале в условиях Амурской области, можно отметить, что в первую половину вегетации начиная от всходов и до выхода в трубку, при смещении срока посева с 15 апреля к 5 маю, происходит удлинение межфазных периодов. Обратная тенденция наблюдается при прохождении последующих периодов, наиболее сильно (практически в два раза) отмечен период выход в трубку-колошение, где при запаздывании со сроком посева он сократился с 24 до 12 дней. При раннем посеве яровое тритикале лучше использует осенне-зимние осадки, и налив зерна происходит в более благоприятных условиях. Из-за высоких температур воздуха и недостатка влаги в июне – июле, при позднем сроке посева (5 мая), продолжительность периода посев – созревание сокращается в среднем на 7 дней. В целом влияние гидротермических условий и срока посева на прохождение межфазных периодов по-разному оказало воздействие на формирование будущего урожая ярового тритикале.

Список литературы

- 1. Поскребышева М.М., Исмагилов Р.Р. Темпы роста и развития яровой пшеницы в зависимости от гидротермических условий // Вестник Казанского государственного аграрного университета. – 2020. – Т. 15. – № 1(57). – С. 38-42. – DOI 10.12737/2073-0462-2020-1-38-42. – EDN BEODOT.
- 2. Кравченко Р.В. Гидротермические условия вегетации кукурузы в связи со сроками посева в зоне достаточного увлажнения Центрального Предкавказья // Политематический сетевой электронный научный журнал Кубанского государственного университета. – 2016. – № 116. – С. 1229-1246. – EDN VQUWCX.
- 3. Тихончук П.В., Муратов А.А., Кравчук О.В. Влияние сроков посева на рост и развитие ярового тритикале в условиях Южной зоны Амурской области // Дальневосточный аграрный вестник. – 2016. – № 1(37). – С. 39-44. – EDN VSUFZP.
- 4. Бесалиев И.Н., Сандакова Г.Н. Характеристика продолжительности межфазных периодов вегетации яровой твёрдой пшеницы в связи с погодными факторами и приёмами агротехники в Оренбургском Предуралье // Известия Оренбургского государственного аграрного университета. – 2018. – № 3(71). – С. 51-55. – EDN USULUD.
- 5. Золотарева Р.И., Лапшин Ю.А., Максимов В.А. Влияние нормы высева и минерального питания на показатели структуры урожая яровой тритикале //

тритикале в условиях Амурской области Электронный научно-производственный журнал «АгроЭкоИнфо»

Международный научно-исследовательский журнал. -2021. -№ 4-1(106). - C. 113-117. - DOI 10.23670/IRJ.2021.106.4.018.

- 6. Посевные площади сельскохозяйственных культур // Витрина статистических данных. URL: <a href="https://showdata.gks.ru/report/279136/?&filter_1_0=2021-01-01+00%3A00%3A00%7C52&filter_2_0=129388&filter_3_0=126753&filter_4_0=13035%2C1_3441%2C13442%2C320258%2C108671%2C13444%2C13445%2C13446%2C13447%2C3203_81%2C13368%2C13348%2C13432%2C13153%2C109140%2C13056%2C13069%2C13073%2_C13196%2C13292%2C13439%2C13353&rp_submit=t
- 7. Muratov A.A., Nizkii S.E. The dependence of spring triticale yield and its structure on harvesting time and methods // IOP Conference Series: Earth and Environmental Science, Khabarovsk: Institute of Physics Publishing, 2020. P. 012023. DOI 10.1088/1755-1315/547/1/012023.
- 8. Muratov A. Growth and development of triticale culture in the Amur Region (Russia) // E3S Web of Conferences: Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020), Blagoveshchensk: EDP Sciences, 2020. P. 02007. DOI 10.1051/e3sconf/202020302007.
- 9. Черноситова Т.Н., Муратов А.А. Агрохимическая оценка состояния почвы опытного поля Дальневосточного государственного аграрного университета // Агропромышленный комплекс: проблемы и перспективы развития: материалы всероссийской научно-практической конференции (Благовещенск, 20–21 апреля 2022 г.). [В 4 т.]. Т. 1. Благовещенск: Дальневосточный ГАУ, 2022. С. 341-348.
- 10. Kalashnikov N.P., Tikhonchuk P.V., Fokin S.A. The influence of micronutrients on the productivity of corn during cultivation on green mass in the southern zone of Amur region // IOP Conference Series: Earth and Environmental Science, Khabarovsk: Institute of Physics Publishing, 2020. P. 012043. DOI 10.1088/1755-1315/547/1/012043.
- 11. Доспехов Б.А. Методика полевого опыта: (с основами статистической обработки результатов исследований): учебник для студентов высших сельскохозяйственных учебных заведений по агрономическим специальностям. Изд. 6-е, стер., перепеч. с 5-го изд. 1985 г. Москва: Альянс, 2011. ISBN 9785903034963.

Цитирование:

Муратов А.А., Тихончук П.В., Туаева Е.В., Оборская Ю.В., Тимошенко Э.В. Влияние погодных условий и сроков посева на продолжительность межфазных периодов ярового тритикале в условиях Амурской области [Электрон. ресурс] // АгроЭкоИнфо: Электронный научно-производственный журнал. — 2022. — № 4. — Режим доступа: http://agroecoinfo.ru/STATYI/2022/4/st_414.pdf. DOI: https://doi.org/10.51419/202124414.